Study with RK - Best blog for gk,gk in Hindi and Hindi gk tricks.

Sunday, 21 August 2016

Permutation and Combination - Important Formulas

Factorial Notation:

Let n be a positive integer. Then, factorialn, denoted n! is defined as:

n! = n(n - 1)(n - 2) ... 3.2.1.

Examples:

We define 0! = 1.

4! = (4 x 3 x 2 x 1) = 24.

5! = (5 x 4 x 3 x 2 x 1) = 120.

Permutations:

The different arrangements of a given number of things by taking some or all at a time, are called permutations.

Examples:

All permutations (or arrangements) made with the letters abc by taking two at a time are (abba,accabccb).

All permutations made with the letters abc taking all at a time are:
( abcacbbacbcacabcba)

Number of Permutations:

Number of all permutations of n things, taken r at a time, is given by:

nPr = n(n - 1)(n - 2) ... (n - r + 1) =n!(n - r)!

Examples:

6P2 = (6 x 5) = 30.

7P3 = (7 x 6 x 5) = 210.

Cor. number of all permutations ofn things, taken all at a time = n!.

An Important Result:

If there are n subjects of which p1 are alike of one kind; p2 are alike of another kind; p3 are alike of third kind and so on and pr are alike of rth kind, 
such that (p1 + p2 + ... pr) = n.

Then, number of permutations of these n objects is =n!(p1!).(p2)!.....(pr!)

Combinations:

Each of the different groups or selections which can be formed by taking some or all of a number of objects is called acombination.

Examples:

Suppose we want to select two out of three boys A, B, C. Then, possible selections are AB, BC and CA.

Note: AB and BA represent the same selection.

All the combinations formed by a,bc taking abbcca.

The only combination that can be formed of three letters abctaken all at a time is abc.

Various groups of 2 out of four persons A, B, C, D are:

AB, AC, AD, BC, BD, CD.

Note that ab ba are two different permutations but they represent the same combination.

Number of Combinations:

The number of all combinations of nthings, taken r at a time is:

nCr =n!=n(n - 1)(n - 2) ... to r factors.(r!)(n -r)!r!

Note:

nCn = 1 and nC0 = 1.

nCr = nC(n - r)

Examples:

i.   11C4 =(11 x 10 x 9 x 8)= 330.(4 x 3 x 2 x 1)

ii.   16C13 = 16C(16 - 13) = 16C3 =16 x 15 x 14=16 x 15 x 14= 560.3!3 x 2 x 1


0 comments:

Note - अगर आपके पास हिन्दी में अपना खुद का लिखा हुआ कोई Motivational लेख या सामान्य ज्ञान से संबंधित कोई साम्रगी या प्रतियोगी परीक्षाओं से संबंधित कोई भी साम्रगी है जो आप हमारी बेबसाइट पर पब्लिश कराना चाहते है तो क्रपया हमें rak.manth@gmail.com पर अपने फोटो व नाम के साथ मेल करें ! पसंद आने पर उसे आपके नाम के साथ पब्लिश किया जायेगा ! क्रपया कमेंट के माध्यम से बताऐं के ये पोस्ट आपको कैसी लगी आपके सुझावों का भी स्वागत रहेगा Thanks !

Popular Posts

Powered by Blogger.